博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
变异检测VarScan软件使用说明
阅读量:6899 次
发布时间:2019-06-27

本文共 3221 字,大约阅读时间需要 10 分钟。

VarScan使用示例,如下:
samtools mpileup -q35 -d8000 -f GBS_A909.fa M008_alignmen_F4.sort.bam >M008_alignmen_F4.sort.mpileup
java -jar VarScan.v2.4.0.jar mpileup2indel M008_alignmen_F4.sort.mpileup --min-var-freq 0 --p-value 0.99 --min-avg-qual 1 --min-coverage 1 --output-vcf 1 >
M008_alignmen_F4.sort.mpileup.indel.txt
 
得到的文件M008_alignmen_F4.sort.mpileup.indel.txt的格式如下所示:

Tab-delimited SNP calls with the following columns:

       Chrom           chromosome name

       Position   position (1-based)

       Ref                reference allele at this position

       Var                variant allele observed

       PoolCall  Cross-sample call using all data (Cons:Cov:Reads1:Reads2:Freq:P-value)

                            Cons - consensus genotype in IUPAC format

                            Cov - total depth of coverage

                            Reads1 - number of reads supporting reference

                            Reads2 - number of reads supporting variant

                            Freq - the variant allele frequency by read count

                            P-value - FET p-value of observed reads vs expected non-variant

       StrandFilt Information to look for strand bias using all reads, format R1+:R1-:R2+:R2-:pval

                            R1+ = reference supporting reads on forward strand

                            R1- = reference supporting reads on reverse strand

                            R2+ = variant supporting reads on forward strand

                            R2- = variant supporting reads on reverse strand

                            pval = FET p-value for strand distribution, R1 versus R2

       SamplesRef    Number of samples called reference (wildtype)

       SamplesHet    Number of samples called heterozygous-variant

       SamplesHom  Number of samples called homozygous-variant

       SamplesNC     Number of samples not covered / not called

       SampleCalls    The calls for each sample in the mpileup, space-delimited

                         Each sample has six values separated by colons:

                     Cons - consensus genotype in IUPAC format

                     Cov - total depth of coverage

                     Reads1 - number of reads supporting reference

                     Reads2 - number of reads supporting variant

                     Freq - the variant allele frequency by read count

                     P-value - FET p-value of observed reads vs expected non-variant      

 
以下是对varscan2的使用说明:

Commands

Three VarScan subcommands will invoke the germline variant calling model. These work with single-sample and multi-sample mpileup input:
mpileup2snp - calls single nucleotide polymorphisms (SNPs)mpileup2indel - calls insertions and deletions (indels)mpileup2cns - calls a consensus genotype (reference, SNP, or indel)
The first two (mpileup2snp and mpileup2indel) report *only* positions at which a variant of the given type (SNP and indel) was called. The third command (mpileup2cns) reports all positions that met the miniumum coverage, or (with the -v parameter), all positions at which a SNP or an indel was called. Use the  --output-vcf 1 argument to get VCF 4.1 output. (能够得到vcf格式的文件)
The following commands still work, but only with single-sample pileup and they do NOT include full VCF output support.
pileup2snp - calls single nucleotide polymorphisms (SNPs)pileup2indel - calls insertions and deletions (indels)pileup2cns - calls a consensus genotype (reference, SNP, or indel)
The first two (pileup2snp and pileup2indel) report *only* positions at which a variant of the given type (SNP and indel) was called. The third command (pileup2cns) reports all positions that met the miniumum coverage, or (with the -v parameter), all positions at which a SNP or an indel was called. 

转载于:https://www.cnblogs.com/xiaofeiIDO/p/6857130.html

你可能感兴趣的文章
Linux启动过程学习
查看>>
【linux+C】神器 vim + 指针相关客串
查看>>
华为 21 级程序员月薪曝光: 270k 封神! 众网友直呼长见识
查看>>
裸辞后,从Android转战Web前端的学习以及求职之路
查看>>
Makefile的常用技术总结
查看>>
java时间工具 判断时间大于一个月,小于一年,时间必须以月为单位分割(欢迎测试)...
查看>>
轻松搞定RabbitMQ开篇:Java消息队列与JMS的诞生
查看>>
MySQL:MGR 学习(2):Write set(写集合)的写入过程
查看>>
Docker+Selenium Grid构建分布式Web测试环境
查看>>
操作系统复习题-第七章 中断和信号机构
查看>>
snakemake--我最喜欢的流程管理工具
查看>>
如何用 Python 和 gensim 调用中文词嵌入预训练模型?
查看>>
nginx三种安装方式
查看>>
陷阱:千万不要随便把serlvet.jar之类的包放在系统的classpath下面
查看>>
K8S有状态服务-云盘扩容解决方案
查看>>
Java8集合源码解析-Hashtable源码剖析
查看>>
飘刃 v0.0.10 首次发布,超快执行速度的 Vue 项目构建工具
查看>>
ssh服务介绍
查看>>
微信分享链接,JS-SDK应用
查看>>
NSQL数据库的5种经典
查看>>